Effect of somatic mutation on DNA binding properties of anti-DNA autoantibodies.
نویسندگان
چکیده
Autoantibodies that bind DNA are a hallmark of systemic lupus erythematosus. A subset of autoantibody*DNA complexes localize to kidney tissue and lead to damage and even death. 11F8, 9F11, and 15B10 are clonally related anti-DNA autoantibodies isolated from an autoimmune mouse. 11F8 binds ssDNA in a sequence-specific manner and causes tissue damage, while 9F11 and 15B10 bind ssDNA non-specifically and are benign. Among these antibodies, DNA binding properties are mediated by five amino acid differences in primary sequence. Thermodynamic and kinetic parameters associated with recognition of structurally different DNA sequences were determined for each antibody to provide insight toward recognition strategies, and to explore a link between binding properties and disease pathogenesis. A model of 11F8 bound to its high affinity consensus sequence provides a foundation for understanding the differences in thermodynamic and kinetic parameters between the three mAbs. Our data suggest that 11F8 utilizes the proposed ssDNA recognition motif including (Y32)V(L), a hydrogen bonding residue at (91)V(L), and an aromatic residue at the tip of the third heavy chain complementarity determining region. Interestingly, a somatic mutation to arginine at (31)V(H) in 11F8 may afford additional binding site contacts including (R31)V(H), (R96)V(H), and (R98)V(H) that could determine specificity.
منابع مشابه
Role of Structure-Based Changes due to Somatic Mutation in Highly Homologous DNA-Binding and DNA-Hydrolyzing Autoantibodies Exemplified by A23P Substitution in the VH Domain
Anti-DNA autoantibodies are responsible for tissue injury in lupus. A subset of DNA-specific antibodies capable of DNA cleavage can be even more harmful after entering the living cells by destroying nuclear DNA. Origins of anti-DNA autoantibodies are not fully understood, and the mechanism of induction of DNA-cleaving activity remains speculative. The autoantibody BV04-01 derived from lupus-pro...
متن کاملThe evolution of human anti-double-stranded DNA autoantibodies.
It has been proposed that the anti-double-stranded DNA (dsDNA) response in patients with systemic lupus erythematosus (SLE) is antigen driven and that DNA or nucleosomes select anti-DNA reactive, somatically mutated B cells. We have used site-directed mutagenesis to systematically revert the somatic mutations of two human anti-dsDNA antibodies from SLE patients to analyze the resulting changes ...
متن کاملDetection of Somatic Mutation in Exon 12 of DNA Polymerase β in Ovarian Cancer Tissue Samples
Background: DNA polymerase β (pol β) is a key enzyme of base excision repair pathway. It is a 1-kb gene consisting of 14 exons. Its catalytic part lies between exon 8 and exon 14. Exon 12 has a role in deoxyribonucleotide triphosphate selection for nucleotide transferase activity. Methods: Genomic DNA was isolated from ovarian carcinoma samples. Single strand conformation polymorphism...
متن کاملAutoantibodies, lupus and the science of sabotage.
Anti-double-stranded DNA antibodies (anti-dsDNA) and antiphospholipid antibodies (APL) are important in the pathogenesis of systemic lupus erythematosus (SLE) and the antiphospholipid syndrome (APS) respectively. Not all anti-dsDNA or APL antibodies can cause clinical effects. Those that are particularly likely to cause tissue damage tend to be of IgG isotype and to possess particular binding p...
متن کاملComputational Investigation on Structural Properties of Carbon Nanotube Binding to Nucleotides According to the QM Methods
The interaction between nucleotides and carbon nanotubes (CNTs) is a subjectof many investigations for treating diseases but there are many questions in this field thatremain unanswered. Because of experimental methods involve assumptions andinterpretation besides limitations, there are many problems that the best study for them isusing theoretical study. Consequently, t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biopolymers
دوره 85 5-6 شماره
صفحات -
تاریخ انتشار 2007